Towards a mathematical definition of Coulomb branches of 3-dimensional N=4 gauge theories

Hiraku Nakajima (RIMS)

Algebraic Lie Theory and Representation Theory 2015 20150606/07

jt work with A. Braverman, M. Finkelberg

50. Motivation

G: compact Lie group (G: its complexification)

M: a quaternionic representation (symplectic representation of G)

3d N=4 SUSY gauge theory associated with (Gc, M)

Physics

Physics

Moduli Space of Vacua

It has two distinguished branches

MH: Higgs branch

Mc: Coulomb branch

hypertable manifolds with SU(2)-action

(rotating opx structures)

MH: mathematically rigorous defined:

$$MH = M /\!\!/ G_c : \text{hyperkable quotient}$$

$$= \vec{\mu}^{-(0)} /\!\!/ G_c \quad \vec{\mu} : M \to \mathbb{R}^3 \otimes \mathbb{R}^4 \qquad = \vec{\mu}_c^{-(0)} /\!\!/ G_c \quad \text{sympletis c}$$

$$= \vec{\mu}^{-(0)} /\!\!/ G_c \quad \vec{\mu} : M \to \mathbb{R}^3 \otimes \mathbb{R}^4 \qquad = \vec{\mu}_c^{-(0)} /\!\!/ G_c \quad \text{sympletis c}$$

$$= \vec{\mu}^{-(0)} /\!\!/ G_c \quad \vec{\mu} : M \to \mathbb{R}^3 \otimes \mathbb{R}^4 \qquad = \vec{\mu}_c^{-(0)} /\!\!/ G_c \quad \text{sympletis c}$$

$$= \vec{\mu}^{-(0)} /\!\!/ G_c \quad \vec{\mu} : M \to \mathbb{R}^3 \otimes \mathbb{R}^4 \qquad = \vec{\mu}_c^{-(0)} /\!\!/ G_c \quad \text{sympletis c}$$

$$= \vec{\mu}^{-(0)} /\!\!/ G_c \quad \vec{\mu} : M \to \mathbb{R}^3 \otimes \mathbb{R}^4 \qquad = \vec{\mu}_c^{-(0)} /\!\!/ G_c \quad \text{sympletis c}$$

$$= \vec{\mu}^{-(0)} /\!\!/ G_c \quad \vec{\mu} : M \to \mathbb{R}^3 \otimes \mathbb{R}^4 \qquad = \vec{\mu}_c^{-(0)} /\!\!/ G_c \quad \text{sympletis c}$$

$$= \vec{\mu}^{-(0)} /\!\!/ G_c \quad \vec{\mu} : M \to \mathbb{R}^3 \otimes \mathbb{R}^4 \qquad = \vec{\mu}_c^{-(0)} /\!\!/ G_c \quad \text{sympletis c}$$

$$= \vec{\mu}^{-(0)} /\!\!/ G_c \quad \vec{\mu} : M \to \mathbb{R}^3 \otimes \mathbb{R}^4 \qquad = \vec{\mu}_c^{-(0)} /\!\!/ G_c \quad \text{sympletis c}$$

$$= \vec{\mu}^{-(0)} /\!\!/ G_c \quad \vec{\mu} : M \to \mathbb{R}^3 \otimes \mathbb{R}^4 \qquad = \vec{\mu}_c^{-(0)} /\!\!/ G_c \quad \text{sympletis c}$$

$$= \vec{\mu}^{-(0)} /\!\!/ G_c \quad \vec{\mu} : M \to \mathbb{R}^3 \otimes \mathbb{R}^4 \qquad = \vec{\mu}_c^{-(0)} /\!\!/ G_c \quad \text{sympletis c}$$

But there is no mathematically rigorous definition of Mc.

Physicists have many examples of Mc (or many recipe to determine Mc)

e.g. - moduli space of magnetic monopoles on R3 - instantons on R4 etc - nilpotent orbits of type A (and conjecturally for classical groups) n Slodowy slice

 $M = N \oplus N^*$ (as G_c -module) (also G: connected) Today Assume

Give a definition of Mc as an affine variety (scheme)

Spec A with many interesting properties studures e.g. quantization, integrable systems etc

§1. Examples MH=304, but Mc nontrivial (discussed later) $\circ N = 0$

o touc hyper Kähler $1 \to T \to T = (T^{\times})^{M} \to T_{F} = (T^{\times})^{M-1} \to 1$ $G \qquad C^{n} \text{ natural action}$ $\longrightarrow \mathcal{M}_{H} = \mathbb{C}^{n} \oplus (\mathbb{C}^{n})^{*} / / \mathbb{L}^{\ell}$

 $\mathcal{M}_{C} = \mathbb{C}^{n_{\Theta}}(\mathbb{C}^{n})^{*}/\!\!/_{T_{E_{n}}}$ $T_{F}^{V}: dual \ torus \subset \widetilde{T}^{V} \cong \widetilde{T} \curvearrowright \mathbb{C}^{n}$

 $\circ N = \mathcal{G}$: adjoint representation $N = \mathcal{G}: adjoint representation <math display="block">\mathcal{G} = \mathcal{G} = \mathcal$ Mc = T*TVW = #xTVW T'= durl torus of TCG

cf. Vasserot's construction of DAHA on equivariant K-theory of the affine Steinberg variety spherical port of degenerate DAHA, as we use equivariant honology of the affine Grassmannian Steinberg variety

```
o quiren gauge theory
Q=(Q0,Q1): quiven of type ADE
Q=(Q0,Q1): quiven of type ADE
V: Q0-graded vector space

G= ∏GL(V1) → N = ⊕ Hm (V0(B1), Vi(B1))

MH = N⊕ N*//G2 = 104 (Lusztig)

MC = moduli space of GQ - monopoles on IR³ with charge = din V
= whoald space of based maps P¹ → flag of degree = dim V

V,W: Q0-graded
G: same
N = ⊕ Hom(V0(B1, Vi(B1)) ⊕ ⊕ Ham(Vi.W1)

MH = N⊕N*//G2 : quive variety (A type ADE)

MC = moduli space of GQ - monopoles on IR³ with charge = din V

singularity out 0 with type = din W
= slices in affine Grassmawnian

(If μ=ΣdimW·Λ: -ΣdimVi α: dominant)
```

- subexample: Q: type $A \to \mathcal{M}_H \cong \mathcal{S}_{\lambda} \wedge \overline{\mathcal{N}_{\mu}}$ $\overline{\mathcal{N}_{\mu}}$: wilposent orbit closure $S_{\lambda}: Slodowy$ &i.e. $\mathcal{M}_C \stackrel{?}{\cong} \mathcal{S}_{\mu} + \mathcal{N}_{\lambda} + \mathcal{N}_{\lambda}$

o Jordan quiver 7^R5

 $M_H = \text{Thlenbeck space for } \text{T(r)-instantons on } \mathbb{R}^4$ with change \mathbb{R} $\mathbb{R}^4/\mathbb{Z}_r$ $\mathbb{R}^4/\mathbb{Z}_r$ with change \mathbb{R} with change \mathbb{R} $\mathbb{R}^4/\mathbb{Z}_r$ with change \mathbb{R} $\mathbb{R}^4/\mathbb{Z}_r$ $\mathbb{R}^4/\mathbb{Z}_r$ with change \mathbb{R} $\mathbb{R}^4/\mathbb{Z}_r$ $\mathbb{R}^4/\mathbb{Z}_r$ $\mathbb{R}^4/\mathbb{Z}_r$ with change \mathbb{R}^4 $\mathbb{R}^4/\mathbb{Z}_r$ $\mathbb{R}^4/\mathbb{Z}_r$ $\mathbb{R}^4/\mathbb{Z}_r$ $\mathbb{R}^4/\mathbb{Z}_r$ with change $\mathbb{R}^4/\mathbb{Z}_r$ $\mathbb{R}^4/\mathbb{Z}_r$ with change $\mathbb{R}^4/\mathbb{Z}_r$ $\mathbb{$

More generally $\mathcal{M}_H = \text{ guiven variety of offine ADE type level} = \langle \overrightarrow{\text{din}} W, \delta \rangle = \mathbf{r}$ $\mathcal{M}_C = \text{ Uhlenkeck space for } G_Q - \text{ instantons on } \mathbb{R}^4/\mathbb{Z}_{\mathbb{R}}$ with charge is repr. at 0 given by din V

§2. Definition of Mc

- Reminde of affine Grassmannian and [BFM]
- Step 1°. An Infinite dimensional variety &= &G, N
- 2.° Convolution product on $H_*^{Go}(R_{G,N})$ $G_o = G(E)$

$$G_K = G((z))$$
, $G_{\theta} = G(z)$ $D = S_{rec} C((z))$

$$\cong \{(P, Q) \mid B: G-bidle \text{ over } D, Q: B|_{D^{\times}} \xrightarrow{G} G \times D^{\times} \text{ trivialization over } D^{\times} \}$$

convolution diagram for Gra:

$$Gr_{G} \times Gr_{G} \stackrel{P}{\longleftarrow} Gr_{K} \times Gr_{G} \stackrel{g}{\longrightarrow} Gr_{G} \stackrel{m}{\longrightarrow} Gr_{G} \stackrel{m}{\longrightarrow} Gr_{G}$$

$$([q_{1}], [q_{2}]) \longleftrightarrow (q_{1}, [q_{2}]) \longmapsto [q_{1}, [q_{2}]] \longmapsto [q_{1}q_{2}]$$

$$A_1 * A_2 := m_* (q^*)^{-1} p^* (A_1 \boxtimes A_2)$$

$$(\operatorname{Perv}_{G_{\mathcal{G}}}(G_{G}), *) : \text{ tensor category} \cong (\operatorname{Rep} G^{V}, \otimes)$$

* [Bezrukavnikov-Finkelberg - Mirkaric]

$$H_{*}^{Go}(G_{G}) \ni C_{1}, C_{2}$$
 $G * C_{2} := m_{*}(C_{2}^{*})^{-1}p^{*}(C_{1} \boxtimes C_{2})$

- $H_{*}^{Go}(Gr_{G})$ is a graded Commutative algebra with 1 = [e]- Noncommutative deformation $H_{*}^{Go}(Gr_{G})$ is a graded Commutative algebra with 1 = [e]
- integrable system $H_{G_0}^*(pt) = H_{G}^*(pt) \longrightarrow H_{*}^{G_0}(Gr_{G})$ to polynomial ring (if G: connected)

```
TR,[BFM]
```

Spec HGO(Gra) -> Spec HG(pt) = Cl is the Kostant-Toda system for GV = Langlands dual group

T*G' & G' x G' left-right multiplication

<e,f,h>: sl2-triple for regular nilpotent element ny ny N+: unipotent group

 $\mu_N^V : T^*G^V \longrightarrow (\underline{N}_{\bullet}^V \otimes \underline{N}_{\bullet}^V)^{\frac{1}{2}}$ moment map for $\underline{N}_{-}^V \times \underline{N}_{-}^V - action$

Kostant-Toda lattice = MN_ (e,e)/NV NV = e+3(f) = t/W Kostaut slice v. gv*, nv*

Hox (Gra): quartum Hamiltonian reduction of Diff GV NB.

— This is the special case N=0. ($\rightarrow M_H=104$)

2nd day

G: connected reductive group $G_k = G((8)) \supset G_0 = G(8)$ $(N:G-module \qquad M=N \circ N^*)$

Grassmannian

GraxGra C GKX Gra B GKX Gra Gra G Gray Gra

H&GO (Gra) is an associative algebra by the convolution product G*C2:= M*(\$*) + (CBC)

- Hora (Gra) is graded, commutative

- H* Gox C* (Grs): noncommutative deformation

 $- H_{G}^{*}(\operatorname{pt}) \longrightarrow H_{F}^{Go}(Gr_{G})$

C[&//AdG] = C[#]W

is the Kostant-Toda integrable system for G^V : Langlands dual group Hamiltonian reduction of T^*G^V by $N_-^V \times N_-^V$ $N_-^V \subset G^V$ unipotent

NB, HGON (Gra) is the quantized Hamiltonian reduction of Diff(GV)

© general N

$$Gr_G = Gk/Go$$
 as before
 $T \equiv J_{G,N} := G_{k} \times_{G_{0}} N_{G} \xrightarrow{f} N_{k}$
 $Gr_{G} \xrightarrow{loc-rank} [g,s] \longrightarrow gs$
 gs
 gs

St version: 3×3 NK

(too oo-dimensionl to work)

$$Gr_{G} = \coprod Gr_{G,\lambda}$$
 (λ : dominant converght)
$$Go - orbit \quad (Anita dimensional, smooth)$$

$$G_{\lambda} = inverse \quad image \quad of \quad Gr_{G,\lambda}$$

* $\mathcal{R}_{\lambda} \to Gr_{G,\lambda}$ is a vector bundle (of ∞ -ramk)

8ubbundle of \mathcal{T}_{λ} sit, $\mathcal{T}_{\lambda}/\mathcal{R}_{\lambda}$ if nite rank

Consider equivariant Borel-Moore homology group $H^{Go}_*(\mathcal{R})$.

Cyclus cit — finite dimensional in base - direction — finite codimensional in fiber - direction (relative to
$$\mathcal G$$
) The grading is $\mathbb Z-$ valued (not $\mathbb Z_{\geq 0}$)

- © convolution product * is defined by a similar diagram as in Gr_{G} .

 NB $St = T^*F_*T^*F \stackrel{}{\rightleftharpoons} T^*F_*T^*F$
- § 3. Properties of of and M_C $A:=H^{GO}_*(R)+\text{convolution product}\qquad M_C:=\text{Spec }A$
- 1) A is a Z-graded algebra (finitely generated)
 (So Mc has a C-action.)

unit 1 = fundamental class of fiber over [e] = Gra

2) A has a "natural" noncommutative deformation by $A_k = H_*^{Go \times C^*}(\&)$

Then $\{ , \} = \frac{1}{h} [,] |_{h=0} : \text{Poisson bracket on } A \quad (\text{deg} = -1)$

3) filtration $Gr_{G} = \coprod_{\lambda: \text{ diminior} \atop \text{closure}} Gr_{G,\lambda} = \bigcup_{\lambda: \text{ distinct}} Gr_{G,\lambda} \longrightarrow \mathbb{R} = \bigcup_{\lambda: \text{ distinct}} \mathbb{R}_{\geq \lambda}$

Claim. Mayer-Vietnies sphits $\rightsquigarrow A=H_*^{Go}(R)=\bigcup H_*^{Go}(R_{\leq >})$ associated graded graded $grad = \bigoplus H_*^{Go}(R_{>})$

of grad has an explicit presentation. M_{C} is smalling combinatorial $R_{\lambda} \rightarrow Gr_{G,\lambda} \rightarrow G/P_{\lambda}$ Q. What is this?

A Hold (R_{λ}) \cong Hoth vector billes $H_{\lambda}^{Go}(R_{\lambda}) \cong H_{\lambda-2r_{out}}(T_{\lambda}/R_{\lambda})$ ($Gr_{G,\lambda}$) $H_{\lambda}^{Go}(R_{\lambda}) \cong H_{\lambda}^{Go}(R_{\lambda})$ $H_{\lambda}^{Go}(R_{\lambda}) \cong H_{\lambda}^{Go}(R_{\lambda})$ $H_{\lambda}^{Go}(R_{\lambda}) \cong H_{\lambda}^{Go}(R_{\lambda})$ $H_{\lambda}^{Go}(R_{\lambda}) \cong H_{\lambda}^{Go}(R_{\lambda})$ $H_{\lambda}^{Go}(R_{\lambda}) \cong H$

4)
$$H_{G}^{*}(pt) \longrightarrow H_{K}^{GO}(R)$$
 gives $M_{C} \stackrel{\underline{\underline{\Psi}}}{=} tt/_{\underline{\Psi}} \cong \mathbb{C}^{l} t= \text{LieT}$
 $T\subset G: \text{max. torus}$
 $W: \text{Weyl group}$
 $W: \text{We$

Then $\&^T = Gr_T \times N_G^T$ $N^T = T$ -fixed part of NCorrelated lattice of T : Spec $H_*(\&^T) \cong T^V$: dual torus //

quantization: ([t, h]) An : quantized Conlord branch Claim. Commutative subalgebra!! (called Gelfand Tsettin subalgebra)

Hence 互: integrable system : D: Poisson commute.

4) Mc has an action of TG(G) : Portryagin dual of TG(G) \Leftrightarrow \square [Mc] has a \square (G)-grading

In fact, $\pi_0(R) = \pi_0(Gr_G) = \pi(G)$: $R = \coprod_{Y \in \pi(G)} R_Y$ $H^{Go}_{\bullet}(\mathcal{R}_{\delta}) * H^{Go}_{\bullet}(\mathcal{R}_{\delta'}) \longrightarrow H^{Go}_{\bullet}(\mathcal{R}_{\kappa+\kappa'})$

NB G: semisimple => 74(G): finite abelian group $G = T^{l} \Rightarrow \pi(G) \cong \mathbb{Z}^{l}$ $\pi_{l}(G)^{v} : \mathcal{A}_{l}(G)^{v} = T^{l}$ $G = GL \Rightarrow \pi(G) \cong \mathbb{Z}$ $\pi_{l}(G)^{v} = \mathbb{T}^{l}$

5) flavor symmetry

Suppose \underline{a} $1 \rightarrow G \rightarrow G \rightarrow 0 \rightarrow 1$ st, $M = N \oplus N^{+}$ is a G - workle

(e.g. $G_F = \overline{11}GL(W_i) \times H_1(gnaph)$ on puiver gause theory)

- Mc has a commutative deformation over of / AdGF

In fact, & has a Go-action W H^{So}(&) ← H^s(pt) ← H^s_F(pt)) Spec

Mr -> F// AdG -> JF//AdG = fike over 0 = original Mc

One can also construct a (partial) resolution of singularities for each dominant coweight >F : C+ GF

In fact, consider $\mathcal{R} = \mathcal{R}_{\mathcal{R},N} \longrightarrow \mathcal{G}_{\mathcal{R}_{\mathcal{F}}} \longrightarrow \mathcal{G}_{\mathcal{R}_{\mathcal{F}}}$ file over lest $\mathcal{G}_{\mathcal{R}_{\mathcal{F}}}$ = original & Use the stratification on Gr_{GF} , to introduce a filtration on $HF_{\bullet}(\mathcal{E})$. Then take the associated graded.

Braden-Licata - Proudfoot-Webster: Symplectic duality quantization of Mc (See dual subjection of MH under some conditions (Mc was not defined in [RLPW])

§4 (Conjectural) "duality" between MH and MC. (More elementary than CBLPWI)

1) stratum Fact. UH has a stratification (symplectic leaves) $M_H = \coprod_{x \in A} M_H^x$ $A = \{ conjugacy \ classes \ of \ stabilizers \ \}$

Conjecture \mathcal{M}_{c} has a stratification parametrized by the same set $A: \mathcal{M}_{c} = \coprod_{\alpha \in \mathcal{A}} \mathcal{M}_{c}^{\alpha}$ with the opposite closure relation

(e.g., MH=104 → Mc: Smooth Symplectic manifold) moduli space of vacua = $\coprod_{\alpha \in \Lambda} \mathcal{M}_{C}^{\alpha} \times \mathcal{M}_{H}^{\alpha}$

2) C-actions $\mathbb{C}^{\times} \cap \mathbb{M} \times \mathbb{N} = \mathbb{N}^{*} \times \mathbb{C}^{\times} \cap \mathbb{M}_{H}$

Then $\mathbb{C}[M_H] = \bigoplus_{n \in \mathbb{Z}_{\geq 0}} \mathbb{C}[M_H]_n$ & grade $0 = \mathbb{C}$ (often) (i.e. M_H is cone)

On the other Gand, Mc is not come in general

Conjecture M_C is come \rightleftharpoons $\mathcal{H}_{\alpha}^{-1}(\circ) \subset M$ is complete intersection

3) Group action and deformation/resolution (mass parameter) (Kähler parameter)

• flavor symmetry $1 \rightarrow G \rightarrow \widetilde{G} \rightarrow G_{\vdash} \rightarrow 1$

Hm(C*,GF) > NF OF OF MH = M//G

who addressed to the Mc

• Homogo (G, C*) $\Rightarrow \times \sim_{\mathcal{I}} \mathcal{I}_{\mathcal{I}}(0) / G = \operatorname{Proj} \bigoplus_{n \geq 0} \operatorname{CP}_{\mathcal{I}}(0) \mathcal{I}_{\mathcal{I}}^{\mathsf{I}}(0) \longrightarrow \mathcal{U}_{\mathcal{H}}$ Note $\| \mathcal{I}_{\mathcal{I}}^{\mathsf{I}}(0) \wedge \mathcal{I}_{\mathcal{I}}^{\mathsf{I}$

Thus mass/Kähle parameter are exchanged between Mc and MH.

Conjecture λ_F has fixed points only to t on MH Mc \longrightarrow λ_F gives a resolution (orbifold in general) of MC MH